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Amplitude and phase characteristics for numerical approximations to the shallow water 
wave equation are obtained for linear and quadratic finite elements, for finite difference 
approximations, for non-constant bathemetry, and for uneven node spacing. Stability is 
shown to require non-zero friction as well as satisfaction of a Courant constraint. Lumping is 
shown to reduce the Courant constraint for stability while higher order and quadratic finite 
element approximations require a more restrictive constraint than their second order and 
linear finite element counterparts. The amplitude of the propagation factor for stable schemes 
and propagating waves is seen to be independent of the Courant number and type of 
numerical approximation. Although the higher order and quadratic schemes provide better 
propagation of the low and moderate frequency waves, the highest frequency waves (2dx) are 
better propagated by low order numerical methods. 0 1985 Academic PW, ITIC. 

INTRODUCTION 

Stability and accuracy properties of finite element schemes for the solution of dif- 
ferential equations provide tremendous insight into the expected behavior of a com- 
putational scheme. Gray and Lynch [3] have studied these properties for various 
time marching schemes for solution of the linearized l-dimensional shallow water 
equations. Their analysis was restricted to the case of linear elements and constant 
bathymetry. They showed that solution procedures for the primitive shallow water 
equations found to be effective in finite difference modeling will be plagued by 
node-to-node, or 2Ax, oscillations in finite element modeling without artificial 
viscosity. However, a wave equation formulation of the continuity equation over- 
comes these difficulties because of its ability to propagate the 2Ax oscillations 
(Lynch and Gray [8]). 

Kinnmark and Gray [S] have recently analyzed the wave equation scheme in 
two space dimensions including the Coriolis force. They considered both con- 
ditionally stable explicit schemes and an unconditionally stable implicit scheme. 
Their implicit algorithm requires that a symmetric matrix be solved for the wave 
continuity equations while the momentum equation only requires the solution of a 
simple diagonal matrix. 
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Because earlier studies have demonstrated the inferiority of many primitive 
equation schemes compared to the wave equation formulation (Lynch and Gray, 
[8]; Gray, Cl]), these schemes will no be studied further here. However 
Kinnmark [4] has done a detailed complementary study to the current presen- 
tation which further verifies the clear superiority of the wave equation approach. 
The present study determines the stability conditions and accuracy properties of the 
explicit wave equation scheme for quadratic Lagrangian elements in one dimension. 
The application of these elements to 2-dimensional problems has met with some 
success (Gray and Kinnmark, [2]; Laible, [6]), however, an appropriate 
numerical analysis has been lacking heretofore. For the 2-dimensional case with 
equal node spacing and constant bathymetry when the Coriolis force is neglected, 
the stability constraint is identical in form to the l-dimensional case with the square 
of the Courant number replaced by the sum of squares of the Courant number in 
the x and y directions. 

One of the important basic features of finite elements is the ease with which non- 
uniform grids may be implemented. However the impact of grid non-uniformities 
on stability and accuracy is rarely given theoretical attention. In the present 
analysis, a simple periodic grid consisting of two different alternating mesh widths 
is chosen for closer investigation. It is shown that stability for the wave equation 
scheme, using quadratic elements, may be obtained only if the ratio of the large-to- 
small mesh width is less than three. Finally the effect of variable bathymetry on 
stability is also considered. Herein the bathymetry is allowed to vary periodically 
with alternating depths appearing at adjacent node points. The stability constraint 
is shown to depend on both depths. 

EQUATIONS CONSIDERED 

This study focuses on alternative procedures for solving the vertically integrated 
equations describing shallow water flow. For the numerical analysis here, the 
linearized forms will be considered. The primitive formulations of these equations 
for conservation of mass is 

L(i, u, V)s$+h c’,v =o 
( ) ax ay 

The 2-dimensional vector momentum equation has the scalar components 

A4,(~, u, v)=y+ru-fv+&o 

and 

A4,([, u, v)=~+Tv+fu+g~=o 

(1) 

(2) 

(3) 
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where 

i is elevation above a datum, 
U is 
V is 
h is 
z 
f t: 

g is 
X is 

Y is 
t is 

the vertically averaged eastward velocity, 
the vertically averaged northward velocity, 
the bathymetry, 
the linearized bottom friction parameter, 
the Coriolis parameter, 
gravitational acceleration, 
positive eastward, 
positive northward, and 
time. 

Lynch and Gray [8] used a wave equation in place of Eq. (1). This equation may 
be derived from (l)-(3) as 

I+‘([, U, V)=$+rL-h haM’.=O aM, A 
ax ay 

(4) 

or 

It has been demonstrated (Lynch and Gray, [S] ) that replacement of (1) by (5) 
provides a very significant decrease in the node-to-node, or 2Ax, oscillations 
typically encountered in a primitive equation scheme. 

TEMPORAL AND SPATIAL APPROXIMATIONS 

The remainder of the paper will be concerned with comparisons of different tem- 
poral and spatial approximations to the momentum equations (2) and (3) in con- 
junction with the wave-continuity equation (5). Spatial approximation using both 
consistent and lumped coefficient matrices generated from linear and quadratic 
isoparametric Lagrangian finite elements as well as second- and fourth-order 
accurate finite difference approximations will be considered. When desired, the lum- 
ping is obtained automatically by use of nodal quadrature rather than Gaussian or 
exact integration. The trapezoidal rule with linear elements and Simpson’s rule with 
quadratic elements in local coordinates both give rise to lumped matrices. 

For the second order in time wave equations, a simple three-time-level symmetric 
approximation is used in the discretization. For the first-order momentum 
equations, a Crank-Nicolson two-level discretization is applied. 
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STABILITY CONSIDERATIONS 

Upon application of either a finite difference or finite element procedure, discrete 
approximations to the differential equations under study are obtained. These 
approximations are combinations of the unknown coefficients which are estimates 
of the solution at a node. If the index j is used to indicate position on the x axis and 
k indicates position in time such that [j,k ~[(jdx, kdt) where Ax and At are con- 
stant increments, then, for example, a2i/ax2 might be approximated as 

- 2i,,k + [J - l,k 

Ax= 

The study here is designed to investigate the growth or decay of the solution at a 
particular nodal location with time. The solution may be viewed as a combination 
of Fourier components such that, for example, in one dimension 

[ = 1 co eVM + ic,.r, 
(74 

u = C u, e%f f b.~, 
Ub) 

and i= fi. Because the equations being analyzed are linear, it is possible to 
analyze each component of the Fourier sum separately. For simplicity the following 
notation will also be used for a representative component. 

Incorporation of this notation into Eq. (6) allows the spatial dependence to be 
accounted for completely through the ercrAx term as 

cj+ I,k -2i,,+:,-l,k=eiuA.‘-2+e-iuAr5. =2(cos~TAx-1)~, . 
Ax2 Ax2 ik Ax2 1-k (9) 

Similarly with all other terms that arise in the discrete approximation, all spatial 
dependence can be accounted for by use of the Fourier expression. Thus the l- 
dimensional discretized form of Eq. (5) for nodej with Coriolis forces neglected can 
be expressed as 

f ',lj,k+i=O, 
i=O 

(10) 

where cli depend on c Ax and are real, and N+ 1 is the number of time levels 
involved in the discretization. The solution to (10) is thus determined by the com- 
plex roots of the Nth degree polynomial 

N 

c a,A’=O, (11) 
,=O 
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where A equals eipA’. It can be shown that solutions to the 2-dimensonal equations 
as well as equations which contains U, I’, and { as unknowns are all dependent 
upon an equation of the same form as (11) although N+ 1 will not necessarily 
equal the number of time levels. 

The roots of Eq. (11) are denoted by 

and it is assumed that each Ai is distinct such that the solution for ik in Eq. (10) is 

ck= f S,(kdt)= -f Ci(L;y. (12) 
,=I i= I 

Now examine the mathematical properties of the Ith root of this series. If /A,1 < 1, 
IS,\ will clearly approach zero as k tends to infinity. This corresponds to a stable 
root. However if IA11 > 1, ISI1 will tend to infinity as k becomes infinite. This latter 
case is called an exponential instability because IS,1 depends on k exponentially. 
Finally if the roots IA,\ = 1, then as k approaches a large value, ISJ will neither tend 
to infinity nor zero but will be equal to / C,I. This a referred to as a neutrally stable 
case because the solution approached is neither zero nor infinity. 

Now consider the case where the roots Ai may be double roots. (Higher order 
multiplicity gives qualitatively the same results.) If A, is a double root, the solution 
S, associated with this root will be of the form 

S/(k At) = CC,+ kD,] 1-f. (13) 

If I& # 1, stability or exponential instability is determined as above depending 
upon whether IA,1 is less or greater than 1. However for the case IA,1 = 1, the 
implications are quite different. Due to the presence of the term kD, in (13) the 
magnitude of S, will tend toward infinity at large k provided D, #‘O. This last case 
will be called an instability with polynomial growth because IS,1 depends on k. 

In analyzing a numerical scheme, the problem then is to determine that neither 
exponential nor polynomial instabilities exist. In other words, the roots di of the 
polynomial equations governing the system must all have magnitude less than one; 
or if roots of magnitude equal to one exist, these roots must be non-multiple. 
Kinnmark [4] has investigated the criteria that ensure the stability of Eq. (11) for 
N up to 4. However for those equations under study here, it is only necessary to 
examine stability for quadratic equations of the form 

a,+cc,l.+X,A2=0. (14) 

Stability for this equation such that both roots have magnitude less than 1 is con- 
veniently decided upon by applying the LienardPChipart modification of the 
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TABLE I 

Character of Roots of a Second-Degree Polynomial 
which is Not Exponentially Unstable 

Conditions Roots Comment 

P,P21% PO=0 

PoP2>@ PI=0 

POPl>Q p2=0 
P2ZQ Po=P,=O 
p1 #O; Po=P2=O 
pozo; p,=p2=0 

Po=P1=P2=O 

1, = -1; 141 < 1 
Iill = 1121 = 1 

2, = +l; I& < 1 
iI=&= -1 
il = -1. ) A,=1 
A, = I, = +I 
None (equation vanishes) 

Stable 
Stable (A, and A2 are 

complex conjugates.) 
Stable 
Polynomial instability 
Stable 
Polynomial instability 
G(~=c(, =a,=0 (trivial) 

Routh-Hurwitz criteria to the coefficients cli (Porter, ES]). This procedure is used 
to define 

po=cr,--cr, +cc, (15a) 

PI = 2(Q - 4 (15b) 
p2=cIo+cI,+cz2. (15c) 

The necessary and sufficient conditions to guarantee Id,/ < 1 and j&j < 1 is that 
popi > 0, pop2 > 0, and pi pz > 0. If any of these products is negative, the scheme 
under study is exponentially unstable. If any of the p’s is zero, but all pip, products 
are non-negative, a neutrally stable or polynomially unstable root exists. These 
possibilities are summerized in Table I. From examination of this table, the follow- 
ing conclusion can be drawn: 

If the coefficients cli of a second degree polynomial describing a 
numerical solution algorithm are such that all products pipj, where pi is 
defined in (15), are nonnegative and at least one pi is non-zero, the 
algorithm will be stable unless pf = p. p2 = 0 in which case the algorithm 
will be polynomially unstable. 

With this general tool established, some specific numerical algorithms will be 
examined for stability. 

APPLICATIONS WITH EVEN NODE SPACING 

The techniques discussed previously are very valuable in determining stability 
constraints for numerical solution of the shallow water equations. The actual 
application can be somewhat tedious in that a difference equation must be obtained 
and manipulated for each special case. In this sections the particular analysis for 
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solution of the l-dimensional wave and momentum equations on a quadratic finite 
element grid will be presented. The integration formula used will be Simpson’s rule 
so that the approximation is lumped. Further the nodal spacing will be assumed 
constant. Stability criteria for other schemes will also be presented subsequently 
although the computational details are omitted. 

For the l-dimensional wave equation analysis with no Coriolis forces, the 
equations to be analyzed are obtained from (5) and (2) as 

w-(5, u)=$+T~-gh~=O 

and 

(16) 

(17) 

These equations are to be solved by the Galerkin finite element method using a 
uniform grid. Both U and i are expanded in terms of quadratic Lagrangian basis 
functions and the approximations are substituted back into (16) and (17). 
Application of the Galerkin procedure yields: 

where the A indicates the approximation is used and 4, is the basis function 
associated with node 1. The integrated expressions obtained will be different 
depending on whether I is an interior node or a node on the boundary of an 
element. The approximations obtained for the wave equation by Simpson’s rule 
integration are 

1= j, ij*+I-21j+l~-1=o 

Ax2 (204 

I=j+l, 

d’% I+ z di,*+ , 
dt2 

--gh 
dt 

-25,*_1+161,-28~~+,+161,+,-21:,,=o 
8Ax2 (2Ob) 

where [ and [* indicate values of surface elevation at intra- and interelement nodes, 
respectively. Use of Fourier expansions in space and finite differencing in time for 
the explicit case yield 

i k+1-2ik+ik~,+~ik+,-ik-1 2gh 2 cos(aAx) gh 
At2 2At +zck- Ax2 [k* = 0, (21a) 
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r k*+ I- w + G- 1+ t rk*+ 1- K 1 4gh cos(fJAx) 
At2 2At - Ax2 iii 

+gh(3 + cos2(oAx)) 
Ax2 

i,f = 0, (21b) 

where the subscript k refers to a position in time and the spatial subscript j is 
understood. Using /z = erPdr such that, for example, ik+ 1 = rick and eliminating ck 
and cz between (21a) and (21b) one obtains 

where 

A2 + [6 - sin2(D Ax)] V2Al + [6 sin*(o Ax)] V4J2 = 0, (22) 

A = (2 - 1)2 + (z At/2)(A2 - l), 

and 

%? = Courant number = -. 
Ax 

Although (22) is a fourth degree polynomial, it may be factored into a product of 
two second degree polynomials such that 

[A+y+cW2][A+y~&i’2]=0, (23) 

where 

yk =4(6-sin2(oAx)+ [6-sin2(aAx)]‘-24sin2(aAx)}. (24) 

The four roots of Eq. (23) are made up of two roots which correspond to the 
approximate analytical solution plus two roots which are numerical artifacts and do 
not correspond to the physical problem. The desirable roots arise from the part of 
(23) containing y ~ while the extraneous roots are associated with the y + portion. 
It is possible to obtain stability constraints associated with all of these roots using 
the technique described previously. 

Expansion of the polynomial [A + y + i%‘*] yields 

cr,+cr,l”+t12A2=o, (254 

where 

z At 
&)=I--, 

2 

a, = -2+Py+, - 

Wb) 

WC) 

a,=l+% 
2 (25d) 
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To examine stability, the p’s are calculated by Eq. (15) as 

Po=4-q2Y* Wa 1 

p, = 2r At Wb) 

Pz=~=Y+. (26~) 

When friction is non-zero, g2, t At, and y k are all non-negative; and the stability 
constraint is 

4>wy,. (27) 

The maximum value of y ~ is 2 while the maximum of y + is 6. Therefore stability is 
controlled by the roots associated with the artifact and the constraints are 

j>??2 and t At>@ (28) 

It is interesting to note that if the numerical artifacts were eliminated, the strictness 
of the stability constraint would be reduced by a factor of 3 and would be less 
stringent than that for linear elements. 

For the 2 Ax wave, cr AX = 71, and thus y _ = 0. Therefore when z At = 0, 
indicating a simulation in the absence of friction, the criteria indicating polynomial 
instability (p: = p. p2 = 0) are satisfied. This means that a stable simulation for the 
quadratic elements in the absence of friction is impossible. In fact the polynomial 
instability was found to be a difficulty for all the wave equation schemes with 
z At = 0. Stability criteria obtained for the various l-dimensional discretizations 
examined appear in Table II. 

Besides considering the stability properties of a numerical scheme, it is also 
important to determine its accuracy. This is accomplished through a comparison of 
A obtained from a discretized equation with A of the analytical solution. The com- 
plex propagation factor T (Leendertse, [7]) defined as the ratio of the numerical to 
analytic A raised to the Nth power where N is the number of steps of size At 
required for the analytic wave to propagate one wavelength, provides a measure of 
accuracy. The magnitude of T is ideally 1 and the decrease (increase) from unity is 
an indication of the excessive (insufficient) damping properties of the scheme. The 
ideal phase of T is zero and inability of the scheme to propagate the wave at the 
correct velocity is indicated by a phase lag or lead. The expressions for 1, for each of 
the six schemes under study appear in Table III. The modulus and phase of the 
propagation factors for these schemes are presented in Fig. 1 and 2. 

Perhaps the most surprising aspect of Fig. 1 is that the moduli of the propagation 
factors are identical for all schemes over most of the range of the abscissa. Reference 
to the expression for A. in Table III indicates that when the quantity under the 
radical sign is negative such that A is complex, 

14 =Ju -W(l +F) (29) 
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TABLE III 

I Values for Equi-spaced Grid Schemes 

Spatial approximations w 

Consistent linear finite element (CL) 3(1 -c)/(2+c) 
Lumped linear finite element (LL) l-c 
Consistent quadratic finite element (CQ) [11+4cZ+ 

~9(3+2c2)2-80(1-c*)*]/[8-4c2] 

Lumped quadratic finite element (LQ) [5+c2+~(1+c2)*+32c2]/4 
Second-order finite difference (FD2) I-c 
Fourth-order linite difference (FD4) (1 - c)(7 - c)/6 

Note. %=(1-W2w~~(1-%‘2~)2-(1+F)(1-F))/(1+F), V=Courant number, F=rAt/2, 
c = cos(u Ax). 

for all schemes and independent of the Courant number and wavelength. The 
variation in 17’ at small abscissa in Fig. 1 occur because the quantity under the 
radical in the expression for L is positive in this range. A positive quantity under the 
radical sign in the expression for 1 also causes 2 to be purely real. Therefore if L is 
positive the phase-velocity is zero and no propagation occurs. It can also be 
deduced that any stable scheme which produces a nonzero co, for a given 

1.4 

1.2- /- LO,CO 

t5 
L 
2 LO- 

5 

$ 0.8- 

LL CL 
FDkFD4 

8 
E 

'$ Q6- 
L /,- LO,CO 

9 0.4- 
+ 
: J C* = 0.25 

0.2 - FL 
WAX 

:0.4 

Ol 
I I I I I I I I 

2 6 IO 20 60 I' 
PARTS PER WAVELENGTH 1 L/AX1 

FIG. 1. Modulus of the propagation factor for the schemes of Table II. 
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C2 = 0.25 
- -216 

1 2 6 IO 20 

PARTS PER WVELENGTH (L/AX) 

60 100 

FIG. 2. Phase of the propagation factor for the schemes of Table II 

wavelength, will always propagate that wavelength if F = 0. Figure 2 indicates some 
variability in the abilities of the various schemes to propagate waves. The FD4 
scheme seems to be the best over the entire range of values of L/Ax. In the range 
4 Ax < L < 20 Ax, the quadratic finite element schemes are superior to the linear 
finite element schemes. For L > 20 Ax, all methods are roughly comparable. 

APPLICATION TO UNEQUAL NODE SPACING 

In this section, stability restrictions on wave equation (5) are examined for une- 
qual node spacing. Because finite elements especially, but also some finite difference 
procedures, are frequently used on irregular meshes, the questions of how the 
variable mesh affects accuracy and stability are quite important. For simplicity a 
grid which alternates between two different mesh sizes will be examined. Stability 
constraints obtained appear in Table IV. The consistent linear finite element scheme 
and a generalization of the fourth-order finite difference scheme to a third-order 
scheme on an irregular grid, FD4, were analyzed. Their stability constraints were 
obtained following the procedures discussed previously. From Table IV it can be 
seen that the stability constraints for these schemes depend on an average Courant 
number in the sense of a geometric mean. The final scheme analyzed on an irregular 
grid was a quadratic finite element scheme making use of the standard 
isoparametric transformation prior to integration by Simpson’s rule. This gives rise 
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TABLE V 

I Values for Unequally-spaced Grid Schemes 

Spatial 
approximation 

Second-order 
finite difference 

FD2) 

Lumped linear 
finite element 

(LL) 

Consistent linear 
finite element 

(CL) 

Fourth-order 
finite difference 

(FD4) 

Lumped quadratic 
finite element 

(LQ) 

[1 +cc+J(l -!x)z+4ac~]/[1(l +&)I 

4[l-c~]/[(LY+l)*-~(~*+l)(l-c*) 

* (cd + I )J(cl + 1 )J + $(a - 1)2( 1 - ,.2)2 - 4(X2 + a + I )( 1 - CZ)] 

+ ,/4c2(c2- l)(G-K)‘+ HZ+ J2+2(2c2- 1) HJ] 

Note. i = (I-%?%J f ~(l-V2~)2-(l+F)(1-F))/(l+F), V = &It/Ax, F = rd@, c = 
cos((u Ax( 1 + a))/2). G = (1 +a--a”)/cc(a+l)2(2a+l), H = (2(a+l))/(r(a+2)), I = 
2(?2+3r+l)/(cr(~+1)2), J=2(r+l)/(a(2a+l)), K=(~~+cc-l)/(~(+1)~(~+2). 

1.2 72 

z LO 
CL 

E I 1.0 - F .# 

8 

0 

i 0.c --72 ;; 

% 
a x 

$ o.6 
--I44 ij 

B 

g 0.4- cc,g= 0.25 --216 
0 LI= 2 

FL I 0.4 
CrAX 

i 

-280 

I 
Ol 

I , I I 1 i 1 I 
2 6 IO 20 60 

l-360 
100 

PARTS PER WAVELENGTH (2L/AX [I+ al t 

FIG. 3. Phase of the propagation factor for the schemes of Table IV 
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to complete lumping of the time derivatives. Of note is the fact that the interior 
node must be in the center half of the element for stability (as well as uniqueness of 
the Jacobian). 

The expressions for 2 for the five schemes considered with unequal node spacing 
appear in Table V. As with the previous cases with even node specing, over most of 
the range of wavelengths the magnitude of I is given by Eq. (29) and is independent 
of wavelength and Courant number as well as ~1. 

Because the amplitude of the propagation factor for these cases is the same as for 
the even grid spacing, Fig. 1 should be referred to for 1 Tj. The phase of T, however, 
does depend on M and the plot of the phase for r = 2 appears as Fig. 3. The phase 
errors presented are seen to be somewhat worse than the corresponding errors in 
Fig. 2 which depict the c1= 1 cases. It is also important to realize that for the grid 
under study the minimum (non-aliased) wavelength is (a + 1) dx. 

Furthermore notice that in contrast to linear elements, quadratic elements have 
zero phase velocity for 2 dx waves, on a uniform grid. On a non-uniform grid, 
however, both element types have zero phase velocity for 2 Ax waves. In actual 
simulations (Lynch and Gray, [S]) both element types show good suppression of 
short wavelength noise. Therefore the Fourier analysis phase portrait does not, in a 
simple way, give information about ability to suppress short wavelength noise 
although it does provide information about which wavelengths have accurately 
modeled phase velocities. 

APPLICATIONS WITH EVEN NODE SPACING 
AND VARIABLE BATHYMETRY 

In the simulation of field problems one typically encounters situations where the 
effects of variable bathymetry are important. In this section, bathymetry which 
varies in an alternating manner from node to node on a regular grid is incorporated 
into the numerical approximation of Eq. (5). Three different spatial approximations 
will be examined, LL, LQ, and FD2. The grids for these methods appear in Fig. 4. 
Note that for the LL and LQ methods, the depths are specified at the nodes 
whereas for the FD2 approach, the depths are specified midway between the nodes. 

FE * 

h2 5 hz hl h2 ill 

FIG. 4. Grid for numerical schemes analyzed with variable bathymetry 
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TABLE VI 

Stability Criteria for Explicit Wave Equation Methods 
on a Uniform One-Dimensional Grid with Variable Bathymetry 

Spatial 
approximation 

Second-order 
finite difference 

(f-2) 

Lumped linear 
finite element 

(LL) 

Lumped quadratic 
finite element 

(J-Q) 

Condition R=h, +h, 
2 

R,h, fh, 
2 

hz>l 
h, 2 

Stability 

criterion 

1 ,gRA? 

Ax’ 

1 >gi? At’ 2 gh, At’ 
Ax” -‘7 3 

4>s(h,+2h2) 

and 

~At>0 

and 

sAt>O 

and 

rAt>O 

and 

?Ar>O 

Stability criteria for these methods are displayed in Table VI. In general, the 
stability depends on some weighted combination of the two different bathymetries. 
The i2-values for the different schemes are displayed in Table VII. 

APPLICATION TO A RECTANGULAR GRID 

Although l-dimensional analyses of stability and accuracy provide insight into 
the behavior of a numerical scheme, it is also useful to consider some simple 2- 

TABLE VII 

1 Values for Equi-Spaced Grid Schemes with Variable Bathymetry 

Spatial 
approximation 0 

Second-order 
finite difference 

1 + J(h, -h,)* + 4h, hzc’ 
- 

h, +h, 

(FD2) 

Lumped linear 
finite element 
W-J 

1 +&-h,)2+‘W;c2 
h,+h, 

Lumped quadratic [3h,(l +c2)+2hZ(1 -c2) 
finite element 

(LQ) 
&/(h,[3c2- 1]+2h,[l -c*])~ +32h:cz]/[2(h, + h2)] 

Note. 1=(1-#iofJ(l-V:W)*-(l+F)(l-F))/(l+F), V~=g(hl+h2)At2/2Ax2, F=fAf/2, 
c = cos(u Ax). 
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TABLE VIII 

Stability Criteria for Explicit Wave Equation Methods 
Using Different Spatial Discretizations on a Uniform 

Two-Dimensional Grid with Constant Bathymetry 

Spatial 
approximation 

Two-dimensional Two-dimensional 
second order lumped linear 

finite difference tinite element 

(FD2) (LL) 

Two-dimensional 
lumped quadratic 

finite element 

(LQ) 

Stability 
criteria 

l>V2 

and 

rAr>O 

1 >YP 

and 

rAf>O 

f>@ 

and 

sAt>O 

dimensional applications. These derivations are more tedious than the l-dimen- 
sional analyses yet they provide some insight into the more complex dependence of 
stability on the grid spacings in the x and y directions. Although inclusion of the 
Coriolis forces in a 2-dimensional analysis is interesting (see, e.g., Kinnmark and 
Gray [S]), in the interest of simplicity this term will be neglected. Thus Eq. (5) will 
be analyzed with f = 0. A rectangular 2-dimensional grid will be examined in con- 
junction with lumped linear and quadratic finite elements. Also, results will be 
presented for the second-order accurate finite difference method. 

The analysis of stability proceeds along the same lines as for the l-dimensional 
cases. The degree of the resulting stability polynomial is, however, considerably 
higher. The successful factorization of this into second-degree polynomials relies 
upon factorization formulas for certain determinants presented in Kinnmark [4]. 
The possibility of polynomial instability is eliminated if r At > 0, while exponential 

TABLE IX 

I Values for Two-Dimensional Equi-spaced Grid Schemes 

Spatial 
approximation w,,w, 

Second-order kite 
difference (FD2) 

Lumped linear 
finite element (LL) 

Lumped quadratic 
finite element (LQ) 

W,=l-C 
0,=1-c: 

W,=l-C I 
0,.=1-c, 

w =+(5+c2+ (1+~~)~+32c*) 1 1:- x 1 
w =:(5+c’& (1+~~,)~+32c~) > I 1 I’ 

Note. 1=(l-~~w,-~~o,~~(l-V~o,-V~o,)*-(l+F)(l-F))~(1+~), 
y = JZ Atidy, F= 5 4112, C, = COS(U, AX), C, = COS(U,. AY). 

92, = & A t/Ax, 

581/60/3-E 



KINNMARK AND GRAY 

8=22.5’ 
--266 

4 I III I I I I-360 
2 6 IO 20 60 loo 

PARTS PER WAVELENGTH CL/AX 1 

FIG. 5. Phase of the propagation factor for schemes of Table VIII in propagation direction of 22.5” 
from the x axis. 

instability is avoided through satisfaction of the Courant number constraint. The 
stability constraints obtained appear in Table VIII. Notice that all the stability con- 
straints in this table have the same functional form as their l-dimensional counter- 
parts with the ID Courant number squared replaced by the sum of the squares of 
the Courant numbers in the x and y directions. 

For the 2-dimensional cases, the functional form of 1 is the same as with the 1D 
cases. Values of o are tabulated in Table IX. For simplicity, the accuracy analysis is 
carried out with Ax = Ay. In the two spatial dimensions, the Fourier analysis can be 

1.2 72 

--72 --72 ; ; 

x x 

- -144 - -144 8 8 
.a .a 
B B 

C2= 0.25 C2= 0.25 - -216 - -216 

F Ld F Ld 
Cn=“.4 Cn=“.4 

8=45* 8=45* --268 --268 

2 2 6 6 IO IO 20 20 60 60 100 loo 

PARTS PER WAVELENGTH (L/AX ) PARTS PER WAVELENGTH (L/AX 1 

FIG. 6. Phase of the propagation factor for schemes of Table VIII in propagation direction of 45” 
from the x axis. 
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carried out for every possible propagation direction for a wave through the mesh. It 
is sufficient, however, to study the range of directions 0” < 8 d 45”; where 8 is the 
angle between the x axis and the direction of propagation, because every other 
direction is equivalent to some direction in this range for the square grid. Because 
8 =O” is the same as the l-dimensional case, the angles 8 = 22.5” and 8 = 45” are 
selected for study here. To be able to assess the properties of the short wavelength 
propagation, it is necessary to know the shortest wavelengths which can be 
represented in any given direction 8. In Kinnmark [4] this is shown to be 
2Axcos8 in the Ogeg45” range. 

The propagation properties of the 2-dimensional schemes are presented in Figs. 5 
and 6. It can be seen that the shortest wavelengths for the quadratic elements at 
8 = 0” and 45” are not propagated; however, the minimum wavelength for 0 = 22.5” 
is propagated with this element. The lumped linear element and second-order finite 
difference scheme, on the other hand, do propagate the minimum wavelength in all 
three directions. For all cases the amplitude behavior is similar with 111 defined by 
Eq. (29) for all propagating waves. The magnitudes of ;L in Table IX, for the case of 
negative sign of the quantity under the radical sign, again satisfy (29) independently 
of Courant number, wavelength, and scheme. Therefore the moduli of the 
propagation factors essentially contain the same information as in the l-dimen- 
sional case and are therefore not shown. 

CONCLUSIONS 

Six different spatial approximations of the wave equation were compared on a 
uniform l-dimensional mesh. All schemes investigated require a positive (non-zero) 
friction to avoid polynomial instability. Quadratic Lagrangian finite elements, con- 
sistent and lumped, were shown to have more severe stability constraints than 
corresponding linear elements. The fourth-order accuracy live-point finite difference 
scheme was shown to have a more restrictive stability constraint than the standard 
three-point, second-order finite difference scheme. 

For a simple grid consisting of two alternating mesh widths it was shown that 
linear elements as well as second- and fourth-order finite differences have a stability 
constraint which depends on the geometric mean of the two grid sizes. The lumped 
quadratic element, however, is stable only when the interior node is located in the 
mid-half of the element. 

A uniform grid with two alternating bathymetry values was shown to have a 
stability constraint governed by the arithmetic mean of the two depths for second- 
order finite differences and lumped linear finite elements. 

The minimum (non-aliased) wavelength which is representable on the l-dimen- 
sional alternating grid is of length equal to the sum of the two alternate lengths. In 
two spatial dimensions, the minimum (non-aliased) wavelength possible to 
represent on a quadratic, orthogonal uniform grid was shown to be anisotropic and 
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equal to 2 Ax cos 6, where 8 is the angle between the direction of propagation of the 
wave and the nearest coordinate axis of the grid. 

For propagating waves, the amplitudes of the propagation factors were shown to 
be identical and independent of spatial approximation for moderately sized friction- 
time-step products and Courant number. This observation is valid for one and two 
spatial dimensions on a uniform grid as well as on a l-dimensional grid with alter- 
nating mesh widths. 
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